Category Archives: fun

Gates Hillman Prediction Market: The Movie

From September 2008 to August 2009, Carnegie Mellon graduate student Abe Othman ran a prediction market to forecast when CMU’s two new computer science buildings, Gates and Hillman, would open. Abe designed the market to predict not just the magic day, but the likelihood of every possible opening day (in other words, the full probability distribution), at the time making his the largest prediction market built in terms of the number of outcomes.

Now Abe created a fascinating video showing the evolution of prices over time in his market. You can see qualitatively that the thing actually worked, zeroing in closer and closer to the actual opening day as the market progressed.

Figure 3 on page 7 of Abe’s paper with Tuomas Sandholm in the 2010 ACM Conference on Electronic Commerce conveys similar information.

Evolution of prices in the Gates Hillman prediction market

Despite plenty of precedent, and despite increasing evidence that non-market methods do surprisingly well too,* I still find it astonishing to see a bunch of people play a subtle betting game for nothing but bragging rights or a small prize and end up with something reasonably intelligent.

By implementing a working market used by over a hundred CMU students, Abe learned a great deal about practical yet important details, from the difficulty of crisply defining ground truth (when exactly is a building officially “open”?) to the black art of choosing the liquidity parameter of Hanson’s market maker.** Abe independently created an intuitive interval betting interface similar, and in some ways superior, to our own Yoopick interface and Leslie Fine’s Crowdcast interface. Abe went so far as to interview his top traders in great detail to learn about their strategies, which ran the gamut from building automated statistical arbitrage agents to calling construction crew members to learn inside information. Abe observed that interval betting using Hanson’s market maker leads to very “spiky” prices. Starting from this informal observation, Abe was able to actually prove an impossibility result of sorts that any price function with otherwise reasonable properties must be spiky in a formal sense. See Abe and Tuomas’s paper for the details.

__________
* Our paper “Prediction without markets”, by Sharad Goel, Daniel Reeves, Duncan Watts, and me, will be published in the 2010 ACM Conference on Electronic Commerce.
** Abe has now developed a flexible market maker that automatically adjusts liquidity to match trader activity. The paper, by Abe, Tuomas, Daniel Reeves, and me, will also be published in the 2010 ACM Conference on Electronic Commerce.

Housing arbitrage, or the $1.4 million muse

Has anyone heard of the following trick, which might be called housing arbitrage?

Buy one house at the beach and a second house near a ski resort. You live in the beach house in the winter and the ski resort in the summer. You rent out the beach house in the summer and the ski resort in the winter.* Can your earnings (rental revenue minus mortgage costs) be enough to live on?

Why it could work: the cost of each house will be roughly proportional to the average annual rental income in that location. If you didn’t live in the properties at all, you should roughly break even (income = mortgage payments). But you are living in each location during the time when rent is essentially free (not contributing to the average) so you have no housing costs. If you find good enough deals (or put money down, or have some small income like freelance writing, etc.) your income may exceed your mortgage enough to live on.

What’s the minimum you could get started with on this strategy? Probably a minimum income to live comfortably as a starting point would be $70K before taxes: see justification below. Assume you can make about 5% of a home’s value in rental income: this seems feasible. Then you need $1.4 million invested in real estate (say two $700K houses) with no mortgage (completely paid). Suppose you can also borrow at 5%. Then if you put 50% down on two $1.4 million properties ($2.8 million total), your effective mortgage rate is 2.5% and your “spread” is 2.5%, so you again earn $70K, but now you have two twice as nice houses (but more risk, need to qualify for loan, etc.). Now here is some magic. Suppose you find an incredible deal (say, in a down real estate market) and you can earn 10% in rental income. You can borrow at 5% and only want to put 20% down, still a respectable portion that the bank may be willing to go for. You buy two $600K homes ($1.2 million total) needing only $240K in cash. Now your rental revenue is $120K and your mortgage payments are $48K, so your net income is, viola, $72K!

Didn’t I forget about taxes and insurance? No, I’m just assuming these can be covered by your $70K income. I did forget about health insurance, though: that could threaten the strategy, at least in the United States. You can can hope that the new health care law helps, or keep an enjoyable day job, or purchase insurance out of the $70K.

You might say $70K pretax is not enough to live the lifestyle you want. But remember, you effectively have no housing costs, and this is just meant as a starting point. This is your “muse” as Tim Ferriss calls it: a steady reliable income that is your buffer. You still should pursue freelance ideas or business ideas that you are passionate about, and one of those just might hit it big. This just gives you freedom to pursue other ideas on your own. Hopefully even at $70K you can save some money to purchase additional properties and increase your income. Note that once your mortgage is paid off, your income will go up.

One nice thing about this strategy, and real estate investments in general, is that they are naturally inflation adjusted: rental rates should go up if inflation goes up.

This really only seems practical for people without kids in school. Although I suppose if your kids went to school in the beach location it might work. You’d only spend 2.5 months in the ski resort.

Certainly there are downsides: constantly moving, living in off-season tourist towns, living in properties that are rented half the year, dealing with renters, risk of loss or default, and managing the business headaches.

If housing arbitrage could really work, why aren’t more people doing it? Maybe it requires too much capital and maybe my math is wildly optimistic. Probably it’s no more than a fun mental exercise. I’m sure it’s been thought of. I can’t find it on a cursory web search but it seems hard to articulate to a search engine. If enough people started doing it, by definition house prices would go up to eliminate the arbitrage.

__________
* Maybe take a week or two in the summer at the beach and the winter at the ski house.

Let the madness begin

Sixty-five men’s college basketball teams have been selected. Tomorrow there will be sixty-four. Half of the remaining teams will be eliminated twice every weekend for the next three weekends until only one team remains.

On April 5th, we will know who is champion. In the meantime, it’s anybody’s guess: any of 9.2 quintillion things could in principle happen.

At Predictalot it’s your guess. Make almost any prediction you can think of, like Duke will win go further than both Kansas and Kentucky, or the Atlantic Coast will lose more games than the Big East. There’s even the alphabet challenge: you pick six letters that include among them the first letters of all four final-four teams.

Following Selection Sunday yesterday, the full range of prediction types are now enabled in Predictalot encompassing hundreds of millions of predictions about your favorite teams, conferences, and regions. Check it out. Place a prediction or just lurk to see whether the crowd thinks St. Mary’s is this year’s Cinderella.

Come join our mad science experiment where crowd wisdom meets basketball madness. We’ve had many ups and down already — for example sampling is way trickier than I naively assumed initially — and I’m sure there is more to come, but that’s part of what makes building things based on unsolved scientific questions fun. Read more about the technical details in my previous posts and on the Yahoo! Research website.

And for the best general-audience description of the game, see the Yahoo! corporate blog.

Update: Read about us on the New York Times and VentureBeat.

You can even get your fix on Safari on iPhone!

Dave playing Predictalot on iPhone

Below is a graph of our exponential user growth over the last couple days. Come join the stampede!

graph of YAP installs for Predictalot

Countdown to web sentience

In 2003, we wrote a paper titled 1 billion pages = 1 million dollars? Mining the web to play Who Wants to be a Millionaire?. We trained a computer to answer questions from the then-hit game show by querying Google. We combined words from the questions with words from each answer in mildly clever ways, picking the question-answer pair with the most search results. For the most part (see below), it worked.

It was a classic example of “big data, shallow reasoning” and a sign of the times. Call it Google’s Law. With enough data nothing fancy can be done, but more importantly nothing fancy need be done: even simple algorithms can look brilliant. When in comes to, say, identifying synonyms, simple pattern matching across an enormous corpus of sentences beats the most sophisticated language models developed meticulously over decades of research.

Our Millionaire player was great at answering obscure and specific questions: the high-dollar questions toward the end of the show that people find difficult. It failed mostly on the warm-up questions that people find easy — the truly trivial trivia. The reason is simple. Factual answers like the year that Mozart was born appear all over web. Statements capturing common sense for the most part do not. Big data can only go so far.*

That was 2003.

In the paper, our clearest example of a question that we could not answer was How many legs does a fish have?. No one on the web would actually bother to write down the answer to that. Or would they?

I was recently explaining all this to a colleague. To make my point, we Googled that question. Lo and behold, there it was: asked and answered — verbatim — on Yahoo! Answers. How many legs does a fish have? Zero. Apparently Yahoo! Answers also knows the number of legs of a crayfish, rabbit, dog, starfish, mosquito, caterpillar, crab, mealworm, and “about 133,000” more.

Today, there are way more than 1 billion web pages: maybe closer to 1 trillion.

What’s the new lesson? Given enough time, everything will be on the web, including the fact that hungry poets blink (✓). Ok, not everything, but far more than anyone ever imagined.

It would be fun to try our Millionaire experiment again now that the web is bigger and search engines are smarter. Is there some kind of Moore’s Law for artificial intelligence as the web grows? Can sentience be far behind? 🙂

__________
* Lance agreed, predicting that IBM’s quest to build a Jeopardy-playing computer would succeed but not tell us much.

Predictalot! (And we mean alot)

I’m thrilled to announce the launch of Predictalot, a combinatorial prediction market for the NCAA Men’s Basketball playoffs. Predict almost anything you can think of, like Duke will advance further than UNC, or Every final four team name will start with U. Check the odds and invest points on your favorites. Sell your predictions anytime, even as you follow the basketball games live.

The basic game play is simple: select a prediction type, customize it, and invest points on it. Yet you’ll never run out of odds to explore: there are hundreds of millions of predictions you can make. The odds on each update continuously based on other players’ predictions and the on-court action.

Predictalot is a Yahoo! App, so you can play it at apps.yahoo.com or you can add it to your Yahoo! home page. I have to admit, it’s an incredible feeling to play a game I helped design right on the Yahoo! home page.

Predicalot app on the Yahoo! home page

That’s all you need to get started. If you’re curious and would like a peek under the hood, read on: there’s some interesting technology hidden in the engine.

Background and Details

Predictalot is a true combinatorial prediction market of the sort academics like us and Robin Hanson have been dreaming about since early in the decade. We built the first version during an internal Yahoo! Hack Day. Finally, we leveraged the Yahoo! Application Platform to quickly build a public version of the game. (Note that anyone can develop a YAP app that’s visible to millions — there’s good sample code, it supports YUI and OpenSocial, and it’s easy to get started.) After many fits and starts, late nights, and eventually all nights, we’re proud and excited to go live with Predictalot version 1.0. I can’t rave enough about the talent and dedication of the research engineers who gave the game a professional look and feel and production speed, turning a pie-in-the-sky idea into reality. We have many features and upgrades in mind for future versions, but the core functionality is in place and we hope you enjoy the game.

In the tournament, after the play-in game, the 64 top college basketball teams play 63 games in a single elimination tournament. So there are 2 to the power 63 or 9.2 quintillion total possible outcomes, or ways the entire tournament can unfold. Predictalot implicitly keeps track of the odds for them all. To put this in perspective, it’s estimated that there are about 10 quintillion individual insects on Earth. Of course, for all practical purposes, we can’t store 9.2 quintillion numbers, even with today’s computers. Instead, we compute the odds for any outcome on the fly by scanning through the predictions placed so far.

A prediction is a statement, like Duke will win in the first round, that will be either true or false in the final outcome. In this case, the prediction is true in exactly half, or 2 to the power 62 outcomes. (Note this does not mean the odds are 50% — remember the outcomes themselves are not all equally likely.) In theory, Predictalot can support predictions on any set of outcomes. That’s 2 to the power 2 to the power 63, or more than a googol predictions. For now, we restrict you to “only” hundreds of millions of predictions categorized into thirteen types. Computing the odds of a prediction precisely is too slow. Technically, the problem is #P-hard: as hard as counting SAT and harder than the travelling salesman problem. So we must resort to approximating the odds by randomly sampling the outcome space. Sampling is a tricky business — equal parts art and science — and we’re still actively exploring ways to increase the speed, stability, and accuracy of our sampling.

Because we track all possible outcomes, the predictions are automatically interconnected in ways you would expect. A large play on Duke to win the tournament instantly and automatically increases the odds of Duke winning in the first round; after all, Duke can’t win the whole thing without getting past the first round.

With 9.2 quintillion outcomes, Predictalot is to our knowledge the largest prediction market built, testing the limits of what the wisdom of crowds can produce. Predictalot is a game, and we hope it’s fun to play. We’d also like to pave the way for serious use of combinatorial prediction market technology.

Why did Yahoo! build this? Predictalot is a smarter market, letting humans and computers each do what they do best. People enter predictions in simple terms they understand like how one team fares against another. The computer handles the massive yet methodical number crunching needed to combine all the pieces together into a coherent overall prediction of a complex event. Markets like Predictalot, WeatherBill, CombineNet, and Internet advertising systems, to name a few, represent the evolution of markets in the digital age, empowering users with extreme customization. More and more, matching buyers with sellers — the core function of markets — requires sophisticated algorithms, including machine learning and optimization. Predictalot attempts to illustrate this trend in an entertaining way.

David Pennock
Mani Abrol, Janet George, Tom Gulik, Mridul Muralidharan, Sudar Muthu, Navneet Nair, Abe Othman, Daniel Reeves, Pras Sarkar

Wanted: Bluetooth sethead

In a typical pairing of a cell phone and a bluetooth device, the “smart” phone drives the “dumb” bluetooth. The computational brains and user interface controls live inside the cell phone together with the antenna. The bluetooth device simply follows orders. For example, a bluetooth headset acts as an alternate microphone and speaker for the phone. The bluetooth truly is an accessory to the phone.

I’d like a reverse sort of bluetooth device. A bluetooth “sethead”, if you will. The cellular antenna lives inside the earpiece, or maybe stays inside your pocket or bag — technically this is the “phone” but it is a dumb device with no screen or interface. The “bluetooth” part is the thing you hold in your hand with all the smarts: the processor, the address book, the screen, the controls, the camera, the gps, another microphone and speaker — everything you normally expect in a phone except the antenna.

Why do I want this? If it existed, I could choose any carrier with any phone. I select a dumb phone from the best carrier and a smart sethead from the best hardware company. A version of an iPod touch with a camera, microphone, and gps would make an ideal sethead.

A MiFi device comes close: it’s a dumb cellular antenna that creates as a mobile wifi hotspot that can connect you to Skype, etc. (I have one from Verizon Wireless and love it.) But it’s not “always on”. MiFi + iPod is great for making calls but not for receiving calls, so is not sufficient for replacing a cell phone.

Sure, the advent of setheads would speed the carriers’ transformation into “dumb pipes”, something they are resisting, but that is inevitable anyway.

Review of Fortune’s Formula by William Poundstone: The stranger-than-fiction tale of how to invest

What is a better investment objective?

  1. Grow as wealthy as possible as quickly as possible, or
  2. Maximize expected wealth for a given time period and level of risk

The question is at the heart of a fight between computer scientists and economists chronicled beautifully in the book Fortune’s Formula by Pulitzer Prize nominee William Poundstone. (See also David Pogue’s excellent review.*) From the book’s sprawling cast — Claude Shannon, Rudy Giuliani, Michael Milken, mobsters, and mob-backed companies (including what is now Time Warner!) — emerges an unlikely duel. Our hero, mathematician turned professional gambler and investor Edward Thorp, leads the computer scientists and information theorists preaching and, more importantly, practicing objective #1. Nobel laureate Paul Samuelson (who, sadly, recently passed away) serves as lead villain (and, to an extent, comic foil) among economists promoting objective #2 in often patronizing terms. The debate sank to surprisingly depths of immaturity, hitting bottom when Samuelson published an economist-peer-reviewed article written entirely in one-syllable words, presumably to ensure that his thrashing of objective #1 could be understood by even its nincompoop proponents.

Objective #1 — The Kelly criterion

Objective #1 is the have-your-cake-and-eat-it-too promise of the Kelly criterion, a money management formula first worked out by Bernoulli in 1738 and later rediscovered and improved by Bell Labs scientist John Kelly, proving a direct connection between Shannon-optimal communication and optimal gambling. Objective #1 matches common sense: who wouldn’t want to maximize growth of wealth? Thorp, college professor by day and insanely successful money manager by night, is almost certainly the greatest living example of the Kelly criterion at work. His track record is hard to refute.

If two twins with equal wealth invest long enough, the Kelly twin will finish richer with 100% certainty.

The Kelly criterion dictates exactly what fraction of wealth to wager on any available gamble. First consider a binary gamble that, if correct, pays $x for every $1 risked. You estimate that the probability of winning is p. As Poundstone states it, the Kelly rule says to invest a fraction of your wealth equal to edge/odds, where edge is the expected return per $1 and odds is the payoff per $1. Substituting, edge/odds = (x*p – 1*(1-p))/x. If the expected return is zero or negative, Kelly sensibly advises to stay away: don’t invest at all. If the expected return is positive, Kelly says to invest some fraction of your wealth proportional to how advantageous the bet is. To generalize beyond a single binary bet, we can use the fact that, as it happens, the Kelly criterion is entirely equivalent to (1) maximizing the logarithm of wealth, and (2) maximizing the geometric mean of gambles.

Investing according to the Kelly criterion achieves objective #1. The strategy provably maximizes the growth rate of wealth. Stated another way, it minimizes the time it takes to reach any given aspiration level, say $1 million, or your desired sized nest egg for retirement. If two twins with equal initial wealth were to invest long enough, one according to Kelly and the other not, the Kelly twin would finish richer with 100% certainty.

Objective #2

Objective #2 refers to standard economic dogma. Low-risk/high-return investments are always preferred to high-risk/low-return investments, but high-risk/high-return and low-risk/low-return are not comparable in general. Deciding between these is a personal choice, a function of the decision maker’s risk attitude. There is no optimal portfolio, only an efficient frontier of many Pareto optimal portfolios that trade off risk for return. The investor must first identify his utility function (how much he values a dollar at every level of wealth) in order to compute the best portfolio among the many valid choices. (In fact, objective #1 is a special case of #2 where utility for money is logarithmic. Deriving rather than choosing the best utility function is anathema to economists.)

Objective #2 is straightforward for making one choice for a fixed time horizon. Generalizing it to continuous investment over time requires intricate forecasting and optimization (which Samuelson published in his 1969 paper “Lifetime portfolio selection by dynamic stochastic programming”, claiming to finally put to rest the Kelly investing “fallacy” — p.210). The Kelly criterion is, astonishingly, a greedy (myopic) rule that at every moment only needs to worry about figuring the current optimal portfolio. It is already, by its definition, formulated for continuous investment over time.

Details and Caveats

There is a subtle and confusing aspect to objective #1 that took me some time and coaching from Sharad and Dan to wrap my head around. Even though Kelly investing maximizes long-term wealth with 100% certainty, it does not maximize expected wealth! The proof of objective #1 is a concentration bound that appeals to the law of large numbers. Wealth is, eventually, an essentially deterministic quantity. If a billion investors played non-Kelly strategies for long enough, then their average wealth might actually be higher than a Kelly investor’s wealth, but only a few individuals out of the billion would be ahead of Kelly. So, non-Kelly strategies can and will have higher expected wealth than Kelly, but with probability approaching zero. Note that, while Kelly does not maximize expected (average) wealth, it does maximize median wealth (p.216) and the mode of wealth. See Chapter 6 on “Gambling and Data Compression” (especially pages 159-162) in Thomas Cover’s book Elements of Information Theory for a good introduction and concise proof.

Objective #1 does have important caveats, leading to legitimate arguments against pure Kelly investing. First, it’s often too aggressive. Sure, Kelly guarantees you’ll come out ahead, but only if investing for “long enough”, a necessarily vague phrase that could mean, well, infinitely long. (In fact, a pure Kelly investor at any time has a 1 in n chance of losing all but 1/n of their wealth — p.229) The guarantee also only applies if your estimate of expected return per dollar is accurate, a dubious assumption. So, people often practice what is called fractional Kelly, or investing half or less of whatever the Kelly criterion says to invest. This admittedly starts down a slippery slope from objective #1 to objective #2, leaving the mathematical high ground of optimality to account for people’s distaste for risk. And, unlike objective #2, fractional Kelly does so in a non-principled way.

Even as Kelly investing is in some ways too aggressive, it is also too conservative, equating bankruptcy with death. A Kelly strategy will never risk even the most minuscule (measure zero) probability of losing all wealth. First, the very notion that each person’s wealth equals some precise number is inexact at best. People hold wealth in different forms and have access to credit of many types. Gamblers often apply Kelly to an arbitrary “casino budget” even though they’re an ATM machine away from replenishment. People can recover nicely from even multiple bankruptcies (see Donald Trump).

Some Conjectures

Objective #2 captures a fundamental trade off between expected return and variance of return. Objective #1 seems to capture a slightly different trade off, between expected return and probability of loss. Kelly investing walks the fine line between increasing expected return and reducing the long-run probability of falling below any threshold (say, below where you started). There are strategies with higher expected return but they end in ruin with 100% certainty. There are strategies with lower probability of loss but that grow wealth more slowly. In some sense, Kelly gets the highest expected return possible under the most minimal constraint: that the probability of catastrophic loss is not 100%. [Update 2010/09/09: The statements above are not correct, as pointed out to me by Lirong Xia. Some non-Kelly strategies can have higher expected return than Kelly and near-zero probability of ruin. But they will do worse than Kelly with probability approaching 1.]

It may be that the Kelly criterion can be couched in the language of computational complexity. Let Wt be your wealth at time t. Kelly investing grows expected wealth exponentially, something like E[Wt] = o(xt) for x>1. It simultaneously shrinks the probability of loss, something like Pr(Wt< T) = o(1/t). (Actually, I have no idea if the decay is linear: just a guess.) I suspect that relaxing the second condition would not lead to much higher expected growth, and perhaps that fractional Kelly offers additional safety without sacrificing too much growth. If formalized, this would be some sort of mixed Bayesian and worst-case argument. The first condition is a standard Bayesian one: maximize expected wealth. The second condition — ensuring that the probability of loss goes to zero — guarantees that even the worst case is not too bad.

Conclusions

Fortune’s Formula is vastly better researched than your typical popsci book: Poundstone extensively cites and quotes academic literature, going so far as to unearth insults and finger pointing buried in the footnotes of papers. Pounstone clearly understands the math and doesn’t shy away from it. Instead, he presents it in a detailed yet refreshingly accessible way, leveraging fantastic illustrations and analogies. For example, the figure and surrounding discussion on pages 197-201 paint an exceedingly clear picture of how objectives #1 and #2 compare and, moreover, how #1 “wins” in the end. There are other gems in the book, like

  • Kelly’s quote that “gambling and investing differ only by a minus sign” (p.75)
  • Louis Bachelier’s discovery of the efficient market hypothesis in 1900, a development that almost no one noticed until after his death (p.120)
  • Poundstone’s assertion that “economists do not generally pay much attention to non-economists” (p.211). The assertion rings true, though to be fair applies to most fields and I know many glaring exceptions.
  • The story of the 1998 collapse of Long-Term Capital Management and ensuing bailout is sadly amusing to read today (p.290). The factors are nearly identical to those leading to the econalypse of 2008: leverage + correlation + too big to fail. (Poundstone’s book was published in 2005.) Will we ever learn? (No.)

Fortune’s Formula is a fast, fun, fascinating, and instructive read. I highly recommend it.

__________
* See my bookmarks for other reviews of the book and some related research articles.

Notes from Yahoo! Open Hack Day NYC

Here are my notes from Yahoo! Open Hack Day NYC. For other perspectives read New York Times open sourcerer Nick Thuesen or the Yahoo! devel blog. You can watch videos of some of the talks or browse pictures.

First off, I cheated. I went to sleep in a hotel room rather than hack all through the night. (Even in college I woke up at 4am rather than pull an all nighter.) Still, I made decent progress on some pet projects including combinatorial betting. Daniel, Sharad, and Winter from Yahoo! Research New York participated for real, working through the night. Returning in the morning showered and caffeinated to greet the sleepwalkers was a little surreal. A number of ex-Yahoos joined the festivities including David Yang, Mor Naaman, and Chad Dickerson. (Havi joked that Yahoo! is like finishing school for entrepreneurs. If you count Yahoo! capture and releases like Mark Cuban and Paul Graham, the spreading influence is enormous.)

Clay Shirky kicked off the event. He’s a fantastic speaker — watch his talk here. His punch line — that successful communities like facebook, twitter, flickr, and wikipedia start small and cohesive (as opposed to large and fragmented: see Yahoo! 360) — was aimed perfectly at the many founders and foundreamers in the audience. There were speakers from Mint and foursquare and tutorials on the Yahoo! Application Platform, Yahoo! Query Language (the most popular service), Yahoo! TV widgets, and more. There was a round of Ignite NYC, a barrage of twenty-slides-in-five-minutes talks, some educational (geek’s guide to patents), some charitable (aid to South America), some hilarious (spaceman from outerspace), some thought provoking (makerbot 3d printers), and many all of the above (meta mechanical turk; the Emoji translation of Moby Dick). Watch the Ignite talks here.

A bunch of small touches made the event memorable, including a steampunk-themed hacking hall complete with retroRed Victorian couches, portraits of hackers through history, funky tweet-streaming sculptures, chalk drawings of old patents, power cords dangling from hanging bird cages, and a guitarherofoosball corner. The food was tasty and at times eccentric, like the hot dog stand and toppings bar under a rainbow umbrella, ice cream cart, and old-fashioned popcorn machine. There was plenty of beer, coffee, red bull, sliders, and cookies, and even (gasp) vegan fare, salmon, and salad.

I give the event an A for style (decor, food) and content (talks, hacks, organization). The one sour note was the wireless — certainly a key ingredient for a good hack day — which began flaky and ended slow but acceptable.

I attended the YAP tutorial and created a rudimentary application. I was pleasantly surprised how simple the process was — the documentation and sample code are great. You can get the hello world app (complete with social hooks) running and add some ajax magic within minutes.

By far one of the coolest sights was the MakerBot Industries 3D printer in action. It sucks in plastic wire, melts it, and deposits it in perfect formation to produce coins, busts, parts for itself, or almost anything in the thingiverse. For Hack Day, the device printed news headlines in peanut butter on toast. We met an nyc resistor who was working on a conveyer belt mechanism for his own MakerBot printer, and he invited us to craft night at their shared hackspace in Brooklyn (a place that would be heaven for my dad and brother; Sharad, Jake, Daniel, and Bethany went to check it out).

I missed the tutorial on Yahoo! TV widgets but I’d like to learn more. They are now in most major TV brands including Sony, Samsung, and LG — millions of sets around the world in the coming months. (The Sony won editor’s choice in the Sept 2009 issue of Wired magazine; the Samsung and LG rated close behind. The sole TV reviewed without Yahoo! Widgets, a Panasonic, was ridiculed for is clunky Viera Cast online interface.) If you’re an internet video startup, like my friend, you need a widget channel. Personally, I’d love to see a sports game tracker that highlights pivotal moments by monitoring in-game betting odds.

Footnote: Two Yahoos made a humorous video (that’s both self-promotional and -deprecating) on what people in Times Square think ‘hacker’ means:

See Paul Tarjan and Christian Heilmann for real definitions.