Category Archives: research

Algorithmic economics postdoc position at Microsoft Research, NYC

We are beginning to search for a postdoc in Algorithmic Economics at Microsoft Research, health New York City with a start date in Summer/Fall 2016. Strong graduating students should apply by December 8, 2015. Faculty: please encourage your best students to apply. Please feel free to forward and distribute the announcement as you see fit.

Research in the Algorithmic Economics group at MSR-NYC spans a wide variety of topics at the interface of economics and computation. Application areas include auctions, crowdsourcing, gaming, information aggregation, machine learning in markets, market interfaces, market makers, monetization, online advertising, optimization, polling, prediction engines, preference elicitation, scoring rules, and social media.

More information:

Microsoft Researchers co-authored 21% of papers at the ACM Conference on Economics and Computation

Twenty-six researchers from Microsoft Research labs in Boston, China, India, Israel, New York City, Redmond, Silicon Valley, and the United Kingdom co-authored a remarkable seventeen of the eighty papers published in the 2014 ACM Conference on Economics and Computation (EC’14).

Moshe Babaioff served as General Chair for the conference and many other Microsoft Researchers served roles including (senior) PC members, workshop organizers, and tutorial speakers.

For research at the intersection of economics and computation, IMHO there’s no stronger “department” in the world than MSR.

Sébastien Lahaie and Jennifer Wortman Vaughan co-authored three papers each. Remarkably, Jenn accomplished that feat and gave birth!

The full list of authors are: Shipra Agrawal, Moshe Babaioff, Yoram Bachrach, Wei Chen, Sofia Ceppi, Nikhil R. Devanur, Fernando Diaz, Hu Fu, Rafael Frongillo, Daniel Goldstein, Nicole Immorlica, Ian Kash, Peter Key, Sébastien Lahaie, Tie-Yan Liu, Brendan Lucier, Yishay Mansour, Preston McAfee, Noam Nisan, David M. Pennock, Tao Qin, Justin Rao, Aleksandrs Slivkins, Siddharth Suri, Jennifer Wortman Vaughan, and Duncan Watts.

The full list of papers are:

Optimal Auctions for Correlated Bidders with Sampling
Hu Fu, Nima Haghpanah, Jason Hartline and Robert Kleinberg

Generalized Second Price Auction with Probabilistic Broad Match
Wei Chen, Di He, Tie-Yan Liu, Tao Qin, Yixin Tao and Liwei Wang

Optimising Trade‐offs Among Stakeholders in Ad Auctions
Yoram Bachrach, Sofia Ceppi, Ian Kash, Peter Key and David Kurokaw

Neutrality and Geometry of Mean Voting
Sébastien Lahaie and Nisarg Shah

Adaptive Contract Design for Crowdsourcing Markets: Bandit Algorithms for Repeated Principal‐Agent Problems
Chien-Ju Ho, Aleksandrs Slivkins and Jennifer Wortman Vaughan

Removing Arbitrage from Wagering Mechanisms
Yiling Chen, Nikhil R. Devanur, David M. Pennock and Jennifer Wortman Vaughan

Information Aggregation in Exponential Family Markets
Jacob Abernethy, Sindhu Kutty, Sébastien Lahaie and Rahul Sami

A General Volume‐ Parameterized Market Making Framework
Jacob Abernethy, Rafael Frongillo, Xiaolong Li and Jennifer Wortman Vaughan

Reasoning about Optimal Stable Matchings under Partial Information
Baharak Rastegari, Anne Condon, Nicole Immorlica, Robert Irving and Kevin Leyton-Brown

The Wisdom of Smaller, Smarter Crowds
Daniel Goldstein, Preston McAfee and Siddharth Suri

Incentivized Optimal Advert Assignment via Utility Decomposition
Frank Kelly, Peter Key and Neil Walton

Whole Page Optimization: How Page Elements Interact with the Position Auction
Pavel Metrikov, Fernando Diaz, Sébastien Lahaie and Justin Rao

Local Computation Mechanism Design
Shai Vardi, Avinatan Hassidim and Yishay Mansour

On the Efficiency of the Walrasian Mechanism
Moshe Babaioff, Brendan Lucier, Noam Nisan and Renato Paes Leme

Long‐run Learning in Games of Cooperation
Winter Mason, Siddharth Suri and Duncan Watts

Contract Complexity
Moshe Babaioff and Eyal Winter

Bandits with concave rewards and convex knapsacks
Shipra Agrawal and Nikhil R. Devanur

Last call: Postdoc positions at Microsoft Research NYC

Microsoft Research New York City seeks outstanding applicants for 2-year postdoctoral researcher positions. We welcome applicants with a strong academic record in one of the following areas:

We will also consider applicants in other focus areas of the lab, including information retrieval, and behavioral & empirical economics. Additional information about these areas is included below. Please submit all application materials by January 11, 2013 for full consideration. Instructions are here.


COMPUTATIONAL SOCIAL SCIENCE

With an increasing amount of data on every aspect of our daily activities — from what we buy, to where we travel, to who we know — we are able to measure human behavior with precision largely thought impossible just a decade ago. Lying at the intersection of computer science, statistics and the social sciences, the emerging field of computational social science uses large-scale demographic, behavioral and network data to address longstanding questions in sociology, economics, politics, and beyond. We seek postdoc applicants with a diverse set of skills, including experience with large-scale data, scalable statistical and machine learning methods, and knowledge of a substantive social science field, such as sociology, economics, psychology, political science, or marketing.

ONLINE EXPERIMENTAL SOCIAL SCIENCE

Online experimental social science involves using the web, including crowdsourcing platforms such as Amazon’s Mechanical Turk, to study human behavior in “virtual lab” environments. Among other topics, virtual labs have been used to study the relationship between financial incentives and performance, the honesty of online workers, advertising impact as a function of exposure time, the implicit cost of “bad ads,” the testing of graphical user interfaces eliciting probabilistic information and also the relationship between network structure and social dynamics, related to social phenomena such as cooperation, learning, and collective problem solving. We seek postdoc applicants with a diverse mix of skills, including awareness of the theoretical and experimental social science literature, and experience with experimental design, as well as demonstrated statistical modeling and programming expertise. Specific experience running experiments on Amazon’s Mechanical Turk or related crowdsourcing websites, as well as managing virtual participant pools is also desirable, as is evidence of UI design ability.

ALGORITHMIC ECONOMICS AND MARKET DESIGN

Market design, the engineering arm of economics, benefits from an understanding of computation: complexity, algorithms, engineering practice, and data. Conversely, computer science in a networked world benefits from a solid foundation in economics: incentives and game theory. Scientists with hybrid expertise are crucial as social systems of all types move to electronic platforms, as people increasingly rely on programmatic trading aids, as market designers rely more on equilibrium simulations, and as optimization and machine learning algorithms become part of the inner loop of social and economic mechanisms. We seek applicants who embody a diverse mix of skills, including a background in computer science (e.g., artificial intelligence or theory) or related field, and knowledge of the theoretical and experimental economics literature. Experience building prototype systems, and a comfort level with modern programming paradigms (e.g., web programming and map-reduce) are also desirable.

MACHINE LEARNING

Machine learning is the discipline of designing efficient algorithms for making accurate predictions and optimal decisions in the face of uncertainty. It combines tools and techniques from computer science, signal processing, statistics and optimization. Microsoft offers a unique opportunity to work with extremely diverse data sources, both big and small, while also offering a very stimulating environment for cutting-edge theoretical research. We seek postdoc applicants who have demonstrated ability to do independent research, have a strong publication record at top research venues and thrive in a multidisciplinary environment.

A toast to the number 303: A redemptive election night for science, and The Signal

The night of February 15, 2012, was an uncomfortable one for me. Not a natural talker, I was out of my element at a press dinner organized by Yahoo! with journalists from the New York Times, Fast Company, MIT Tech Review, Forbes, SF Chronicle, WIRED, Reuters, and several more [1]. Even worse, the reporters kept leading with, “wow, this must a big night for you, huh? You just called the election.”

We were there to promote The Signal, a partnership between Yahoo! Research and Yahoo! News to put a quantitative lens on the election and beyond. The Signal was our data-driven antidote to two media extremes: the pundits who commit to statements without evidence; and some journalists who, in the name of balance, commit to nothing. As MIT Tech Review billed it, The Signal would be the “mother of all political prediction engines”. We like to joke that that quote undersold us: our aim was to be the mother of all prediction engines, period. The Signal was a broad project with many moving parts, featuring predictions, social media analysis, infographics, interactives, polls, and games. Led by David “Force-of-Nature” Rothschild, myself, and Chris Wilson, the full cast included over 30 researchers, engineers, and news editors [2]. We confirmed quickly that there’s a clear thirst for numeracy in news reporting: The Signal grew in 4 months to 2 million unique users per month [3].

On that night, though, the journalists kept coming back to the Yahoo! PR hook that brought them in the door: our insanely early election “call”. At that time in February, Romney hadn’t even been nominated.

No, we didn’t call the election, we predicted the election. That may sound like the same thing but, in scientific terms, there is a world of difference. We estimated the most likely outcome – Obama would win 303 Electoral College votes, more than enough to return him to the White House — and assigned a probability to it. Of less than one. Implying a probability of more than zero of being wrong. But that nuance is hard to explain to journalists and the public, and not nearly as exciting.

Although most of our predictions were based on markets and polls, the “303” prediction was not: it was a statistical model trained on historical data of past elections, authored by economists Patrick Hummel and David Rothschild. It doesn’t even care about the identities of the candidates.

I have to give Yahoo! enormous credit. It took a lot of guts to put faith in some number-crunching eggheads in their Research division and go to press with their conclusions. On February 16, Yahoo! went further. They put the 303 prediction front and center, literally, as an “Exclusive” banner item on Yahoo.com, a place that 300 million people call home every month.

The Signal 303 prediction "Exclusive" top banner item on Yahoo.com 2012-02-16

The firestorm was immediate and monstrous. Nearly a million people read the article and almost 40,000 left comments. Writing for Yahoo! News, I had grown used to the barrage of comments and emails, some comic, irrelevant, or snarky; others hateful or alert-the-FBI scary. But nothing could prepare us for that day. Responses ranged from skeptical to utterly outraged, mostly from people who read the headline or reactions but not the article itself. How dare Yahoo! call the election this far out?! (We didn’t.) Yahoo! is a mouthpiece for Obama! (The model is transparent and published: take it for what it’s worth.) Even Yahoo! News editor Chris Suellentrop grew uncomfortable, especially with the spin from Homepage (“Has Obama won?”) and PR (see “call” versus “predict”), keeping a tighter rein on us from then on. Plenty of other outlets “got it” and reported on it for what it was – a prediction with a solid scientific basis, and a margin for error.

This morning, with Florida still undecided, Obama had secured exactly 303 Electoral College votes.

New York Times 2012 election results Big Board 2011-11-07

Just today Obama wrapped up Florida too, giving him 29 more EVs than we predicted. Still, Florida was the closest vote in the nation, and for all 50 other entities — 49 states plus Washington D.C. — we predicted the correct outcome back in February. The model was not 100% confident about every state of course, formally expecting to get 6.8 wrong, and rating Florida the most likely state to flip from red to blue. The Hummel-Rothschild model, based only on a handful of variables like approval rating and second-quarter economic trends, completely ignored everything else of note, including money, debates, bail outs, binders, third-quarter numbers, and more than 47% of all surreptitious recordings. Yet it came within 74,000 votes of sweeping the board. Think about that the next time you hear an “obvious” explanation for why Obama won (his data was biggi-er!) or why Romney failed (too much fundraising!).

Kudos to Nate Silver, Simon Jackman, Drew Linzer, and Sam Wang for predicting all 51 states correctly on election eve.

As Felix Salmon said, “The dominant narrative, the day after the presidential election, is the triumph of the quants.” Mashable’s Chris Taylor remarked, “here is the absolute, undoubted winner of this election: Nate Silver and his running mate, big data.” ReadWrite declared, “This is about the triumph of machines and software over gut instinct. The age of voodoo is over.” The new news quants “bring their own data” and represent a refreshing trend in media toward accountability at least, if not total objectivity, away from rhetoric and anecdote. We need more people like them. Whether you agree or not, their kind — our kind — will proliferate.

Congrats to David, Patrick, Chris, Yahoo! News, and the entire Signal team for going out on a limb, taking significant heat for it, and correctly predicting 50 out of 51 states and an Obama victory nearly nine months prior to the election.

Footnotes

[1] Here was the day-before guest list for the February 15 Yahoo! press dinner, though one or two didn’t make it:
-  New York Times, John Markoff
-  New York Times, David Corcoran
-  Fast Company, EB Boyd
-  Forbes, Tomio Geron
-  MIT Tech Review, Tom Simonite
-  New Scientist, Jim Giles
-  Scobleizer, Robert Scoble
-  WIRED, Cade Metz
-  Bloomberg/BusinessWeek, Doug MacMillan
-  Reuters, Alexei Oreskovic
-  San Francisco Chronicle, James Temple

[2] The extended Signal cast included Kim Farrell, Kim Capps-Tanaka, Sebastien Lahaie, Miro Dudik, Patrick Hummel, Alex Jaimes, Ingemar Weber, Ana-Maria Popescu, Peter Mika, Rob Barrett, Thomas Kelly, Chris Suellentrop, Hillary Frey, EJ Lao, Steve Enders, Grant Wong, Paula McMahon, Shirish Anand, Laura Davis, Mridul Muralidharan, Navneet Nair, Arun Kumar, Shrikant Naidu, and Sudar Muthu.

[3] Although I continue to be amazed at how greener the grass is at Microsoft compared to Yahoo!, my one significant regret is not being able to see The Signal project through to its natural conclusion. Although The Signal blog was by no means the sole product of the project, it was certainly the hub. In the end, I wrote 22 articles and David Rothschild at least three times that many.

Raise your WiseQ to the 57th power

One of the few aspects of my job I enjoy more than designing a new market is actually building it. Turning some wild concept that sprung from the minds of a bunch of scientists into a working artifact is a huge rush, and I can only smile as people from around the world commence tinkering with the thing, often in ways I never expected. The “build it” phase of a research project, besides being a ton of fun, inevitably sheds important light back on the original design in a virtuous cycle.

In that vein, I am thrilled to announce the beta launch of PredictWiseQ, a fully operational example of our latest combinatorial prediction market design: “A tractable combinatorial market maker using constraint generation”, published in the 2012 ACM Conference on Electronic Commerce.

You read the paper.1  Now play the game.2 Help us close the loop.

PredictWiseQ Make-a-Prediction screenshot October 2012

PredictWiseQ is our greedy attempt to scarf up as much information as is humanly possible and use it, wisely, to forecast nearly every possible detail about the upcoming US presidential election. For example, we can project how likely it is that Romney will win Colorado but lose the election (6.2%), or that the same party will win both Ohio and Pennsylvania (77.6%), or that Obama will paint a path of blue from Canada to Mexico (99.5%). But don’t just window shop, go ahead and customize and buy a prediction or ten for yourself. Your actions help inform the odds of your own predictions and, crucially, thousands of other related predictions at the same time.

For example, a bet on Obama to win both Ohio and Florida can automatically raise his odds of winning Ohio alone. That’s because our market maker knows and enforces the fact that Obama winning OH and FL can never be more likely than him winning OH. After every trade, we find and fix thousands of these logical inconsistencies. In other words, our market maker identifies and cleans up arbitrage wherever it finds it. But there’s a limit to how fastidious our market maker can be. It’s effectively impossible to rid the system of all arbitrage: doing so is NP-hard, or computationally intractable. So we clean up a good bit of arbitrage, but there should be plenty left.

So here’s a reader’s challenge: try to identify arbitrage on PredictWiseQ that we did not. Go ahead and profit from it and, when you’re ready, please let me and others know about it in the comments. I’ll award kudos to the reader who finds the simplest arbitrage.

Why not leave all of the arbitrage for our traders to profit from themselves? That’s what nearly every other market does, from Ireland-based Intrade, to Las Vegas bookmakers, to the Chicago Board Options Exchange. The reason is, we’re operating a prediction market. Our goal is to elicit information. Even a completely uninformed trader can profit from arbitrage via a mechanical plug-and-chug process. We should reserve the spoils for people who provide good information, not those armed (solely) with fast or clever algorithms. Moreover, we want every little crumb of information that we get, in whatever form we get it, to immediately impact as many of the thousands or millions of predictions that it relates to as possible. We don’t want to wait around for traders to perform this propagation on their own and, besides, it’s a waste of their brain cells: it’s a job much better suited for a computer anyway.

Intrade offers an impressive array of predictions about the election, including who will win in all fifty states. In a sense, PredictWiseQ is Intrade to the 57th power. In a combinatorial market, a prediction can be any (Boolean) function of the state outcomes, an ungodly degree of flexibility. Let’s do some counting. In the election, there are actually 57 “states”: 48 winner-takes-all states, Washington DC, and two proportional states — Nebraska and Maine — that can split their electoral votes in 5 and 3 unique ways, respectively. Ignoring independent candidates, all 57 base “states” can end up colored Democratic blue or Republican Red. So that’s 2 to the power 57, or 144 quadrillion possible maps that newscasters might show us after the votes are tallied on November 6th. A prediction, like “Romney wins Ohio”, is the set of all outcomes where the prediction is true, in this case all 72 quadrillion maps where Ohio is red. The number of possible predictions is the number of sets of outcomes, or 2 to the power 144 quadrillion. That’s more than a googol, though less than a googolplex (maybe next year). To get a sense of how big that is, if today’s fastest supercomputer starting counting at the instant of the big bang, it still wouldn’t be anywhere close reaching a googol yet.

Create your own league to compare your political WiseQ among friends. If you tell us how much each player is in for, we’ll tell you how to divvy things up at the end. Or join the “Friends Of Dave” (FOD) league. If you finish ahead of me in my league, I’ll buy you a beer (or beverage of your choice) the next time I see you, or I’ll paypal you $5 if we don’t cross paths.

PredictWiseQ is part of PredictWise, a fascinating startup of its own. Founded by my colleague David Rothschild, PredictWise is the place to go for thousands of accurate, real-time predictions on politics, sports, finance, and entertainment, aggregated and curated from around the web. The PredictWiseQ Game is a joint effort among David, Miro, Sebastien, Clinton, and myself.

The academic paper that PredictWiseQ is based on is one of my favorites — owed in large part to my coauthors Miro and Sebastien, two incredible sciengineers. As is often the case, the theory looks bulletproof on paper. But I’ve learned the hard way many times that you don’t really know if a design is good until you try it. Or more accurately, until you build it and let a crowd of other people try it.

So, dear crowd, please try it! Bang on it. Break it. (Though please tell me how you did, so we might fix it.) Tell me what you like and what is horribly wrong. Mostly, have fun playing a market that I believe represents the future of markets in the post-CDA era, a.k.a the digital age.

__________
1 Or not.
2 Or not.

Congratulations Pete Wurman and Kiva Systems, a bellwether of the automated economy

Congratulations to my academic sibling, friend, and Detroit Red Wings fan Pete Wurman, whose company Kiva Systems just became Amazon’s second largest acquisition ever.

In short, Kiva Systems designs, builds, and operates intelligent autonomous robots to pick and stow products in giant distribution centers for companies like Toys R Us, Walgreens, and Zappos. (The latter is an Amazon subsidiary.) The best way to understand Kiva Systems is to watch their robots in action: an amazing sight to see. Here is a clip from IEEE Spectrum:

In 2003, I remember sitting in the back seat of a car with Pete, him excitedly demo-ing the concept to me via an animated simulation on his laptop, little dots representing robots weaving in and out of each on the screen. (Pete’s laptop was a mac. In grad school, Pete was every bit the Apple fan I was and more. He and I programmed HyperCard and Newton together. Pete advocated for simplicity in design before it was cool. When I briefly switched to Windows, he never wavered.)

By 2006, the robots were real. Pete took me and our shared academic parent, Mike Wellman (who I believe also played an early role in the company), on a tour. Dots on a laptop had become squat orange robots receiving orders, fetching products, avoiding each other, seeking power, and otherwise navigating around a complex environment with computational minds of their own. The designs were inspired: for example, to lift a box, the robot spun underneath it to extend a corkscrew so that the product wouldn’t get jarred. They even added noise in the robots’ paths, so their wheels wouldn’t wear grooves in the floor (call it a floorsaver algorithm).

By coincidence, a few weeks ago, I was speaking to someone from Amazon who works on optimizing the way people (ha!) retrieve, store, and pack items in their distribution centers and I mentioned Pete’s company. He said “until that happens” he would focus on optimizing their current systems. Little did we (or at least I) know how quickly “until” would come.

Kiva Systems isn’t just an incredibly cool company run by amazing people. It’s a harbinger of things to come as the world moves inexorably toward an Automated Economy.

By the way, if you’re worried that robots will take jobs away from people, don’t. The world is a better place with mechanical devices doing mechanical tasks, leaving people to do more interesting and creative things, for example turning crazy ideas into companies. Remember that the purpose of jobs is to produce valuable things and improve the world. Despite political rhetoric, jobs are not an end to themselves. Otherwise, we should all be happy digging ditches and filling them back up, or pumping gas for people who would rather do it themselves. Think about where society should go in fifty or a hundred years when automation can handle more and more tasks. It would be a real shame if at that time people were still “working for a living” in jobs they don’t enjoy simply for the sake of keeping them occupied.

Prediction Market PowWow at Yahoo! Research New York, August 2011

I am incredibly lucky. Last August, I spent three days straight thinking almost exclusively about one topic: prediction markets, mostly algorithms. Even better, I was in great company: eleven incredible visitors from across the country took time out of their busy schedules to join me at Yahoo! Research NYC in an impromptu “prediction market powwow”: Yiling Chen, Sanmay Das, Lance Fortnow, Nicolas Lambert, Abe Othman, Mike Ruberry, Rahul Sami, Florian Teschner, Jenn Wortman Vaughn, Christof Weinhardt, and Lirong Xia. (Plus fellow Yahoos Miro Dudik, Sebastien Lahaie, and David Rothschild.) It’s amazing to have a job that allows this kind of time for research and blue-sky thinking: thanks Yahoo!. It’s humbling to have such stellar colleagues to work with: thanks everyone who came. It’s also wonderful to see “the kids” (former interns and postdocs) doing so well: Rahul now has tenure at U Michigan, Yiling is a professor at Harvard, Jenn is a professor at UCLA, and Nicolas is a professor at Stanford. (Lirong: You’re next!)

Here are our notes and here is a photo:

Prediction Market Powwow Yahoo! Research Aug 2011

Two upcoming NYC-area CS-econ events: AMMA & NYCE Day

  1. The Second Conference on Auctions, health more about Market Mechanisms and Their Applications (AMMA) is next Monday and Tuesday August 22-23, generic view 2011, web at CUNY in midtown manhattan. The program, including contributed talks on school choice, prediction markets, advertising, and market design, and invited talks by market designer extraordinaire Peter Cramton and private company stock exchange SecondMarket (where millionaires buy Facebook), look to be excellent. Hope to see you there!
  2. The fourth annual New York Computer Science and Economics Day (NYCE Day) is Friday, September 16, 2011, at NYU. You have until next Friday August 26 to submit a short talk or poster. The goal of the meeting is to bring together researchers in the larger New York metropolitan area (read: DC-Boston-Chicago) with interests in computer science, economics, marketing, and business, and a common focus in understanding and developing the economics of Internet activity.

2011 ACM Conference on Electronic Commerce and fifteen other CS conferences in San Jose

If you’re in the Bay Area, come join us at the 2011 ACM Conference on Electronic Commerce, June 5-9 in San Jose, CA, one of sixteen conferences that comprise the ACM Federated Computing Research Conference, the closest thing we have to a unified computer research conference.

The main EC’11 conference includes talks on prediction markets, crowdsourcing, auctions, game theory, finance, lending, and advertising. The papers span a spectrum from theoretical to applied. If you want evidence of the latter, look no further than the roster of corporate sponsors: eBay, Facebook, Google, Microsoft, and Yahoo!.

There are also a number of interesting workshops and tutorials in conjunction with EC’11 this year, including:

Workshops:

  • 7th Ad Auction Workshop
  • Workshop on Bayesian Mechanism Design
  • Workshop on Social Computing and User Generated Content
  • 6th Workshop on Economics of Networks, Systems, and Computation
  • Workshop on Implementation Theory

Tutorials:

  • Bayesian Mechanism Design
  • Conducting Behavioral Research Using Amazon’s Mechanical Turk
  • Matching and Market Design
  • Outside Options in Mechanism Design
  • Measuring Online Advertising Effectiveness

The umbrella FCRC conference includes talks by 2011 Turing Award winner Leslie G. Valiant, IBM Watson creator David A. Ferrucci, and CMU professor, CAPTCHA co-inventor, and Games With a Purpose founder Luis von Ahn.

Hope to see many of you there!

Crowdpark: Taking Facebook and now Florida by storm

Crowdpark logoCrowdpark is an impressive, well-designed prediction market game that’s already attracted 500,000 monthly active users on Facebook, the 11th fastest growing Facebook app in April.

It’s a dynamic betting game with an automated market maker, not unlike Inkling Markets in functionality (or even Predictalot minus the combinatorial aspect). What stands out is the flashy UI, both literally and figuratively. The look is polished, slick, refreshing, and richly drawn. It’s also cutesy, animation-happy, and slow to load. Like I said, Flash-y in every way. The game is well integrated into Facebook and nicely incorporates trophies and other social rewards. Clearly a lot of thought and care went into the design: on balance I think it came out great.

Crowdpark is a German company with an office in San Francisco. In addition to their Facebook game, they have German and English web versions of their game, and white-label arrangements with gaming companies. They launched in English just last December.

Crowdpark’s stunning growth contrasts with decidedly more mixed results on this side of the Atlantic. I wonder how much of Crowdpark’s success can be attributed to their German roots, their product, their marketing, or other factors?

Crowdpark has an automated market maker they call “dynamic betting” that I can’t find any technical details about [1]. Here’s their well-produced video explanation:

They say it’s “patent pending”, though my colleague Mohammad Mahdian did some nice reverse engineering to show that, at least in their Facebook game, they’re almost certainly using good-old LMSR. Here is a graph of Crowdpark’s market maker price curve for a bet priced at 1%:

Crowdpark's automated market maker price curve

Here is the raw data and the fit to LMSR with b=20,000.

risk   to win (CP)   to win (LMSR)
1 91 91.079482
2 181 181.750593
5 451 451.350116
10 892 892.847929
20 1747 1747.952974
50 4115 4115.841760
100 7535 7535.378665
200 13019 13019.699483
500 23944 23944.330406
600 26594 26594.687310
700 28945 28945.633048
800 31059 31059.076097
900 32979 32979.512576
1000 34740 34740.000000

Still, there’s a quote buried in the video at 0:55 that caught my attention: “you’re current profit is determined by the fluctuation of the odds”.

There’s only one market maker that I know of where the profit fluctuates with the odds, and that’s my own dynamic parimutuel market, which by coincidence recently went from patent pending to inventor cube delivered. 🙂

David Pennock's dynamic parimutuel market (DPM) patent cube - 4/2011

With every other market maker, indeed almost every prediction market, the profit is fixed at the time of the bet. Add to that the fact that Crowdpark bought a majority stake in Florida horse racing circuit Saratoga Racing Inc. and plans to operate all bets exclusively through their system, leads me to wonder if they may have some kind of parimutuel variant, the only style of betting that is legal in the US.

Of course, it may be that I simply misinterpreted the video.


[1] The technical exec at Crowdpark seems to be Aleksandar Ivanov. I found a trade press paper on (internal) prediction markets he wrote in 2009 for the Journal of Business Forecasting.